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a b s t r a c t

While locality preserving projection (LPP) is directly applicable to only vector data, two-dimensional

locality preserving projection (2DLPP) is directly applicable to two-dimensional data. As a result, 2DLPP

is computationally more efficient than LPP. On the other hand, when determining the transform axes,

both conventional 2DLPP and LPP do not exploit the class label information of training samples, the use

label information, we proposed one novel LPP method, i.e. two-dimensional discriminant supervised

LPP (2DDSLPP). We also analyzed the characteristics and advantages of 2DDSLPP and presented the

difference and relationship between 2DDSLPP and other methods. Compared with two-dimensional

discriminant LPP (2DDLPP), 2DDSLPP has a stronger capability to preserve the distance relation of

samples from different classes. We used two face databases to test 2DDSLPP and several other two-

dimensional dimensionality reduction methods. Experimental results show that 2DDSLPP can obtain a

higher classification right rate.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the field of face recognition, many dimensionality reduction
methods, such as principal component analysis (PCA) [1], linear
discriminant analysis (LDA) [2,3], and locality preserving projec-
tion (LPP) [4–10], have been developed over the past few decades.
All these methods reduce the dimension of original data by
transforming the data into a lower-dimensional space. PCA can be
considered as the best data representation method. This is
because if the transform results obtained using different methods
are, respectively, exploited to reconstruct the original data, the
mean squared error between the original data and the data recon-
structed using the PCA transform result is the minimum. LDA is a
supervised dimensionality reduction method that seeks the
following transform axes: the transform results of the data points
of different classes will be far as much as possible from each other
and the transform results of the data points of the same class will
be close as much as possible to each other. We note that when
transforming samples into the new space, both PCA and LDA do
not take into account whether the local structure of samples is
preserved. On the other hand, in many classification applications
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uter Science & Technology,

ology, Shenzhen, Guangdong
such as in the application where the nearest neighbor classifier is
used, to preserve the local structure information is also important.
LPP is a locality structure preserving method that tries to preserve
the intrinsic geometry of the samples. LPP also appears not to be
sensitive to noise and outliers [4].

Though LPP has been applied in many domains, it still has
limitations. For example, when applied to recognition problems,
conventional LPP has the following shortcoming: since conven-
tional LPP is an unsupervised method, when exploiting the
training samples to solve the transform axes it cannot exploit
the class label of the training samples, the use of which is usually
advantageous for producing good classification result. Under this
circumstance, the supervised locality preserving projection (SLPP)
was proposed. Since SLPP takes advantage of the class label infor-
mation, it usually obtains a higher classification accuracy than
conventional LPP [5]. Based on the idea of the linear discriminant
analysis, researchers also proposed the discriminant locality
preserving projection (DLPP) [6] and the orthogonal discriminant
locality preserving projection method (ODLPP) [11].

When we apply conventional LPP, SLPP, DLPP and ODLPP to
two-dimensional data such as images, we must transform these
data into one-dimensional vectors in advance. The resulting
vectors usually lead to a high-dimensional vector space and
covariance matrix, which brings a large computational burden.
This also usually causes the small sample size (SSS) problem,
which means that the eigenvalue equation corresponding to LPP
cannot be directly solved because of the matrix singularity [12]. In
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order to overcome this problem, PCA has ever been used as a
preprocessing step of conventional LPP [7]. However, we note that
the goal and essence of LPP is indeed quite different from PCA.
This implies that the use of PCA actually will offend the locality
preserving projection goal of LPP. In this paper we refer to all
vector-based LPP methods including LPP, SLPP, DLPP and ODLPP as
one-dimensional LPP.

In order to make the locality preserving projection methodol-
ogy directly applicable to matrix data, researchers also proposed
two-dimensional LPP (2DLPP) [8,9]. Compared with one-dimen-
sional LPP, 2DLPP has several advantages such as that it can avoid
the SSS problem and reduce the computational cost. On the other
hand, 2DLPP is still an unsupervised method.

In this paper, we propose one improvement to 2DLPP. We refer
it to as two-dimensional discriminant supervised LPP (2DDSLPP).
2DDSLPP tries to obtain the projection space in which data points
of the same class will preserve their original neighbor relation-
ship. In the projection space obtained using 2DDSLPP, while the
data points from different classes are far from each other, two data
points from two different classes are also partially subject to the
following constraint: the larger the distance between the original
two samples is, the larger the distance between the two data
points should be. Comparative experiments on 2DPCA [13,14],
2DLPP, 2DDLPP [10], 2DLDA and 2DDSLPP show that 2DDSLPP can
obtain a high classification accuracy.

This paper is organized as follows: Section 2 provides a brief
review of 2DLPP. Section 3 introduces the proposed improvement
to 2DLPP. Section 4 presents the comparison analysis on 2DDSLPP
and 2DDLPP as well as 2DLDA. Section 5 describes the experi-
mental results. Finally Section 6 offers the conclusion.
2. Two-dimensional locality preserving projection (2DLPP)

Suppose the image sample set is fX1;X2 . . .XMg, where Xi is the
matrix representation of the ith image sample. The size of each
sample is m� n. The transform axis is denoted as a and the
transform result is Yi ¼ aT Xi. It should be pointed out that the
transform result Yi obtained using one transform axis of 2DLPP is a
vector, whereas the transform result obtained using one transform
axis of one-dimensional LPP is a scalar. The set fY1;Y2:::YMg forms
the sample projection space. The objective function of 2DLPP is

min
X

i;j

JYi � YjJ
2Wij; ð1Þ

where J � J means the l2 norm, W is the similarity matrix. Entries
of W are defined as follows: if Xi is among the k-nearest-neighbors
of Xj or Xj is among the k nearest-neighbors of Xi, then
Wij ¼ expð�JXi � XjJ

2=tÞ; otherwise, Wij ¼ 0. W is indeed a sym-
metric matrix. Parameter t is set to a positive real number.
According to [4], we can obtain

1

2

X
i;j

JYi � YjJ
2Wij ¼ aT XðL� InÞX

T a; ð2Þ

where X ¼ ½X1 X2 . . . XM � is the sample matrix that consists of
the matrices of all the samples, and D is a diagonal matrix defined
as Dii ¼

P
jWij, L¼D�W , � represents the Kronecker product.

The Kronecker product can be briefly illustrated as follows. If A is
an m by n matrix and B is a p by q matrix, then the result of A� B

is the mp by nq matrix

E¼ A� B¼

a11B � � � a1nB

^ & ^

am1B � � � amnB

8><
>:

9>=
>;:

We can use the constraint aT XðD� InÞXT a¼ 1 (In is an n order
identify matrix) to remove an arbitrary scaling factor of the
transform axis [7]. Under this constraint, we know that the
optimal transform axis of 2DLPP will be the eigenvector corres-
ponding to the smallest eigenvalue of the following eigenvalue
equation:

XðL� InÞX
T a¼ lXðD� InÞX

T a: ð3Þ

3. Improvement to 2DLPP

For image applications, since the matrices in Eq. (3) has a much
lower dimensionality than those in the eigenvalue equation of the
one-dimensional LPP, 2DLPP usually does not encounter the small
sample size (SSS) problem. On the other hand, 2DLPP is still an
unsupervised method. This means that 2DLPP neglects the class
label information of training samples when exploiting them to
solve its transform axes. Suppose that there are two samples,
respectively, from two classes and one sample is among the k

neighbors of the other sample (this might occur in the border of
two classes), then 2DLPP will transform them into close points,
which is not helpful for classification. In order to overcome this
shortcoming of 2DLPP, we propose the two-dimensional discri-
minant supervised LPP, i.e. 2DDSLPP.

3.1. Description of 2DDSLPP

The objective function of 2DDSLPP is defined as

min

P
i;jJYi � YjJ

2SSijP
i;jJYi � YjJ

2SDij

; ð4Þ

where Ss is the similarity matrix of samples from the same class.
SD is the similarity matrix of the samples from different classes.
Their definitions are as follows:

Ssij ¼
expð�JXi � XjJ

2=tÞ if xi; xj are from the same class

0 otherwise

(

and

SDij
¼

expð�JXi � XjJ
2=tÞ if xi; xj are from different classes

0 otherwise
:

(

The objective function (4) consists of two parts: i.e. the
numerator part and the denominator part. The numerator part
constrains the transform results of samples from the same class,
and the denominator part constrains the transform results of
samples from different classes. The goal of the objective function
is to minimize

P
i;jJYi � YjJ

2SSij and to maximize
P

i;jJYi � YjJ
2SDij.

Clearly the objective function requires that neighbor samples from
the same class should be transformed into data points close to
each other and samples from different classes should be
transformed into data points far from each other.

Adopting a similar analysis method on the objective function of
2DLPP, the objective function (4) can be transformed into as
follows:

min

P
i;jJYi � YjJ

2SSijP
i;jJYi � YjJ

2SDij

¼min
aT XðL1 � InÞXT a

aT XðL2 � InÞXT a
; ð5Þ

where L1 ¼D1 � Ss, D1ii ¼
P

jSSij, L2 ¼D2 � SD, D2ii ¼
P

jSDij. Let
aT XðL2 � InÞXT a¼ cðca0Þ, where c is a constant, then we can
define the following Lagrange function:

Lða; lÞ ¼ aT XðL1 � InÞX
T aþlðc � aT XðL2 � InÞX

T aÞ: ð6Þ

In other words, objective function (5) is equivalent to the objective
function min

P
i;jJYi � YjJ

2SSij
under the condition that

P
i;jJYi �

YjJ
2SDij

is fixed. Clearly the solution to minimize (6) will occur
under the condition that the partial derivative of Lða; lÞ with
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respect to a equals zero, i.e. @Lða; lÞ=@a¼ 0. As a result, we know
that the optimal solution of (6) should be the eigenvector
corresponding to the minimum eigenvalue of the following
generalized eigenvalue problem:

XðL1 � InÞX
T a¼ lXðL2 � InÞX

T a: ð7Þ

The rationales of 2DSLPP can be described as follows: First, to
minimize

P
i;jJYi � YjJ

2SSij
requires that samples from the same

class preserve their distance relationship well. This is similar to
2DLPP except that 2DSLPP takes the samples from the same class
as the neighbors of one sample while 2DLPP determines the
neighbors in terms of only the distance metric and does not take
the class relationship into account. Second, as we know, if two
original samples, respectively, from two classes have a large
distance, then SDij

has a relatively small value. As a result, to makeP
i;jJYi � YjJ

2SDij
have a fixed value indeed implies that if two

original samples from two different classes have a large distance,
their transform results should also have a relatively large distance.
On the other hand, if two original samples respectively from two
classes have a small distance, then the transform results of the
two samples should also have a relatively small distance. This
means that besides that 2DSLPP can preserve the neighbor
relationship for samples from the same class, 2DSLPP is also
helpful to preserve the distance relation for samples from dif-
ferent classes.
3.2. 2DDSLPP-based feature extraction procedure

The 2DDSLPP-based feature extraction procedure consists of
the following three steps: The first step solves the eigenvectors of
the corresponding eigenvalue equation. The second step exploits
the eigenvalues to determine transform axes. We formally
describe the three steps as follows:

Step 1: Solve Eq. (7) to obtain the eigenvectors and eigenvalues.
Step 2: Determine transform axes. Suppose that the eigenvec-

tors corresponding to the d eigenvalues l1ol2o � � �old are
a1; a2; . . . ; ad. If r transform axes are needed, then we should select
the first r eigenvectors as the transform axes.

Step 3: Let A¼ ½a1; a2; . . . ;ad�. Transform Xi into Yi using
yi ¼ AT Xi.
4. Comparison between 2DDLPP, 2DLDA and 2DDSLPP

Superficially, 2DDSLPP seems to be formally similar to 2DDLPP
and 2DLDA. However, 2DDSLPP is also obviously different from
them. In order to investigate the similarity and the difference, we
compare the proposed 2DDSLPP with 2DDLPP [10] and 2DLDA
[15,16] in this section.
4.1. Comparison between 2DDSLPP and 2DLDA

Let x be the transform axis of 2DLDA, then the transformation
from Xi to Yi will be performed by Yi ¼ Xix. Suppose there are C

classes and each class has nc samples. The objective function of
2DLDA is

J2DLDAðxÞ ¼max
xT SBx

xT SW x
¼max

xT
PC

i ¼ 1ðXi � X ÞT ðXi � X Þx

xT
PC

c ¼ 1

Pnc

i ¼ 1ðX
c
i � Xi Þ

T
ðXc

i � Xi Þx
;

ð8Þ

where X is the mean matrix of all the samples, X i is the mean
matrix of the ith class, and Xc

i denotes the i-th sample from the cth
class. Exploiting the following equation:

xT
PC

i ¼ 1ðXi � X ÞT ðXi � X Þx

xT
PC

c ¼ 1

Pnc

i ¼ 1ðX
c
i � Xi Þ

T
ðXc

i � Xi Þx

¼

PC
i ¼ 1 JXi x� XxJ2PC

c ¼ 1

Pnc

i ¼ 1 JXc
i x� Xi x

¼

PC
i ¼ 1 JYi � Y J2PC

c ¼ 1

Pnc

i ¼ 1 JYc
i � YiJ

2
;

we can transform the objective function of 2DLDA into

J2DLDAðxÞ ¼max

PC
i ¼ 1 JYi � Y J2PC

c ¼ 1

Pnc

i ¼ 1 JYc
i � YiJ

2
: ð9Þ

We note that the objective function as shown in (4) of 2DDSLPP
is identical to the following function:

J¼max

P
i;jJYi � YjJ

2SDijP
i;jJYi � YjJ

2SSij

: ð10Þ

From (9), we know that the goal of 2DLDA is to make each class
mean far as much as possible from the mean of all the samples,
while making each sample close as much as possible to its class
mean. From (10), we know that 2DDSLPP attempts to separate the
samples from different classes while requiring the samples of the
same classes to be close to each other. 2DDSLPP is different from
2DLDA as follows: first, 2DLDA evaluates the separability in terms
of the distance between class means or the distance between the
sample and its class mean, whereas 2DDSLPP evaluate the
separability in terms of the distance between samples. Second,
in 2DLDA, samples from the same class are dealt with in the same
way and no similarity matrix is used to express the similarity
between different samples from the same class. In other words,
we can also say that 2DLDA uses the same similarity parameter
‘‘1’’ to represent the similarity between all the samples from the
same class. However, 2DDSLPP uses a variable parameter, i.e.
similarity coefficient, to represent the similarity between two
samples from the same class. As a result, while 2DDSLPP requires
that samples from the same class be close to each other, it also
tries to preserve the neighbor relationship (locality structure) of
samples from the same class. Based on the analysis shown in
Section 3 and the objective function of 2DDSLPP, we can conclude
as follows: While 2DDSLPP requires that samples from different
classes to be far from each other, it also partially requires that the
larger the distance between two original samples from different
classes is, the larger the distance between their transform results
should be. In contrast, whiling implementing the transform,
2DLDA does not take into account the locality structure of
samples. Indeed, 2DDLPP can also be viewed as a combination
of the ideas of both 2DLDA and 2DLPP.

4.2. Comparison between 2DDSLPP and 2DDLPP

Suppose there are C classes and each class has nc samples, then
the description of 2DDLPP is as follows: First, the objective
function of 2DDLPP is

min

PC
c ¼ 1

Pnc

i;j ¼ 1 JYc
i � Yc

j J
2Sc

ijPC
i;j ¼ 1 JMi �MjJ

2Wij

; ð11Þ

where both Sc and W are similarity matrices, and Mi, Mj,
respectively, represent the transform results of the sample means
of the ith and jth class, i.e. Mi ¼ 1=nc

Pnc

k ¼ 1 Yi
k, Mj ¼ 1=nc

Pnc

k ¼ 1 Yj
k.

Yc
i denotes the transform result of the i-th sample from the cth

class. The entries of Sc represent the similarity of two samples
from the same class. Sc are defined as follows: if Xi and Xj belong
to the same class, then Sc

ij ¼ expð�JXi � XjJ
2=tÞ; otherwise, Sc

ij ¼ 0.
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Fig. 1. Some face images from the ORL database.

Table 1
The mean and the standard deviation of the 10 top recognition rates (%) on the ORL

database.

Method G2/8 G3/7 G4/6 G5/5

2DPCA 75.3873.1 84.5473.1 88.8773.2 90.0571.5

2DLDA 79.4674.8 88.6773.2 90.4672.5 93.1771.6

2DLPP 72.1674.2 83.1373.9 87.7973.4 91.6972.5

2DDLPP 78.5673.8 87.3473.7 90.5473.4 93.5272.4

2DDSLPP 79.5674.0 89.3374.7 91.1773.4 94.1872.2

Y. Xu et al. / Neurocomputing 73 (2009) 245–249248
The entries of W represent the similarity of the means of two
classes and are determined as follows: Wij ¼ expð�JFi � FjJ

2=tÞ,
where Fi is the sample mean of the ith class, i.e. Fi ¼ 1=nc

Pnc

k ¼ 1 Xi
k.

We can compare 2DDSLPP and 2DDLPP by analyzing their
objective functions as shown in (4) and (11). We note that
the numerators of (4) and (11) are the same, which is actually the
weighted sum of the distance between the transform results of
two samples from the same class and the weight is the similarity
of the two samples. The main difference between the two
objective functions is from the denominator part. In (4),P

i;jJYi � YjJ
2SDijrepresents the weighted sum of the distances

between two samples from different classes. However, in (11),PC
i;j ¼ 1 JMi �MjJ

2Wij stands for the weighted sum of the distances
between means of the samples of different classes (also referred
to as class means). Consequently, while 2DDLPP requires that the
means of different classes be far from each other, it also tries to
partially preserve the distance relation of the class means. That is,
it requires that the farther from each other the class means are,
the farther from each other their transform results should be. In
this sense, while 2DDLPP preserves the distance relation of the
class means, it is possible that 2DDLPP does not perform well in
preserving the distance relation between some samples from
different classes, especially in the case where the class has a
complex distribution. We can conclude that 2DDLPP can perform
well in preserving the locality structure of within-class samples,
whereas it might fail in preserving the distance relation between
some samples from different classes.

2DDSLPP also requires that different classes to be far from each
other. It achieves this by constraining the transform results of
samples rather than the class means. In other words, while
2DDSLPP requires that samples from different classes be far from
each other, it also tries to preserve the distance relation of these
samples. That is, it requires that the farther from each other the
original samples from different classes are, the farther from each
other their transform results should be. As 2DDSLPP directly
imposes the distance constraint on the samples from different
classes rather than on the class means, it has a stronger capability
to preserve the distance relation of samples from different classes
than 2DDLPP.
5. Experimental results

In this section we test 2DDSLPP, 2DLPP, 2DPCA, 2DLDA and
2DDLPP using two face databases. We use the nearest neighbor
classifier to classify transform results of samples obtained using
different methods.
5.1. Experiment on the ORL database of faces

The ORL face database includes 400 face images from 40
subjects [17]. The images include variations in facial expression
(smiling/not smiling, open/closed eyes) and facial detail. The
subjects are in an upright, frontal position with tolerance for some
tilting and rotation of up to 201. Each of the face images contains
112�92 pixels. Several face images of the ORL database are
shown in Fig. 1.

We segmented the ORL database into a number of training sets
and testing sets and tested the methods using all of them. We
used Gx/y to denote the groups of the training sets consisting of x

samples per subject and the corresponding testing sets consisting
of the remaining y samples per subject. There are the following
four groups: G2/8, G3/7, G4/6 and G5/5. When we performed
experiments on ‘‘G2/8’’, we arbitrarily selected two samples per
subject as training samples and took the remaining eight samples
of each subject as testing samples. In this subsection, for each ‘‘Gx/
y’’, we arbitrarily used 10 training sets and the corresponding
testing sets to test the methods. We showed the mean and the
standard deviation of the top accuracies of the experiments on the
10 training sets and the corresponding testing sets of each ‘‘Gx/y’’
in Table 1 . Table 1 shows that 2DDSLPP obtains a higher
recognition rate than 2DLPP. In addition, Table 1 also shows that
2DDSLPP performs better than both 2DDLPP and 2DLDA.

5.2. Experiments on the AR face database

The AR face database contains 4000 images of frontal view
faces with different facial expressions, illumination conditions,
and occlusions (sun glasses and scarf) [18].

We first resized the images to 40 by 50 pixels using the down-
sampling method in [19]. Several AR samples after down-
sampling are shown in Fig. 2. Because the training and testing
using the whole database is very time consuming, we exploited
only the samples of the first 40 subjects to test all the methods.
We run the experiments for the following four groups of the
training and testing sets: G6/20, G8/18, G10/16, G12/24, where Gx/
y is also defined as in Section 5.1. For each ‘‘Gx/y’’, we arbitrarily
used 10 training sets and the corresponding testing sets to test the
methods. We showed the mean and the standard deviation of
the top accuracies of the experiments on the 10 training sets and
the corresponding testing sets of each ‘‘Gx/y’’ in Table 2.
6. Conclusion

In this paper, we proposed and tested one improvement to
2DLPP, i.e. 2DDSLPP. While 2DDSLPP tries to preserve the local
structure of the samples from the same class, it also integrates the
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Fig. 2. Some face images generated from the AR database by using the down-sampling method in [19].

Table 2
The mean and the standard deviation of the 10 top recognition rates (%) on the AR

database.

Method G6/20 G8/18 G10/16 G12/24

2DPCA 45.2374.3 47.9276.3 55.8074.0 57.7774.9

2DLDA 83.4875.6 85.7278.8 92.9774.4 94.4574.5

2DLPP 46.66716.3 47.6776.0 53.7074.5 55.1874.5

2DDLPP 86.4174.0 88.0177.5 93.3673.4 94.9573.1

2DDSLPP 86.4474.6 88.6777.5 93.7073.8 95.6873.7

Y. Xu et al. / Neurocomputing 73 (2009) 245–249 249
advantages of LPP and LDA in a good way. 2DDSLPP can obtain the
subspace which well discriminates different classes and is
partially subject to the essence of LPP. Our analysis shows that
while 2DDLPP preserves the distance relation of the class means,
it is possible that 2DDLPP does not perform well in preserving the
distance relation between some samples from different classes,
especially in the case where the class has a complex distribution.
However, 2DDSLPP has a stronger capability to preserve the
distance relation of samples from different classes than 2DDLPP.
The experimental results show that 2DDSLPP can obtain a higher
classification accuracy than 2DDLPP, 2DPCA and 2DLDA.
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